カール=グスタフ=ヤコビの情報(CarlGustavJacobJacobi) 数学者 芸能人・有名人Wiki検索[誕生日、年齢、出身地、星座]
カール=グスタフ=ヤコビさんについて調べます
■名前・氏名 |
カール=グスタフ=ヤコビと同じ1804年生まれの有名人・芸能人 カール=グスタフ=ヤコビと同じ12月10日生まれの有名人・芸能人 カール=グスタフ=ヤコビと同じ出身地の人 |
カール=グスタフ=ヤコビの情報まとめ
カール=グスタフ=ヤコビ(Carl Gustav Jacob Jacobi)さんの誕生日は1804年12月10日です。
現在に関する情報もありますね。1851年に亡くなられているようです。
カール=グスタフ=ヤコビのプロフィール Wikipedia(ウィキペディア)カール・グスタフ・ヤコブ・ヤコビ(Carl Gustav Jacob Jacobi, 1804年12月10日 - 1851年2月18日)は、ドイツの数学者。 1804年、ユダヤ人の家系に出生。ベルリン大学で学び、1825年に哲学博士の学位を得た。学位論文は部分分数の理論についての解析的なものであった。 1827年にケーニヒスベルク大学で数学の員外教授となり、1829年には正教授に就任。1842年までその座にあったが、1843年に過労で倒れ、療養のために数か月間イタリアで過ごした。帰国後はベルリンに滞在し、国王から年金を受けて一生を過ごした。 1829年、楕円関数に関する古典的論文を著した。この業績は2階の運動エネルギー方程式を積分する際の必要性から、数理物理学にとって大変重要である。回転系の運動方程式が可積分系となるのは楕円関数として記述可能な三つの場合のみで、それは「振り子」「重力場内の対称こま」そして「自由回転体」である。 楕円関数の研究途上におけるニールス・アーベルとの競争は、二人の天才が同時期に同じ研究テーマにおいて火花を散らした例として有名である。結局アーベルが一歩先んじたかたちであり、ヤコビも彼の論文を絶賛したが、惜しくも1829年4月にアーベルは死去。その後はヤコビがアーベルの研究を引き継いで発展させた。 ヤコビはまた、楕円関数を数論に応用してジョゼフ=ルイ・ラグランジュの四平方定理(ピエール・ド・フェルマーの多角数定理における四角数の場合)を精密にしたヤコビの四平方定理を得た。しばしば超幾何級数の研究に応用されるヤコビのテータ関数は、彼にちなみ名づけられたものである。 彼の最も重要な論文『楕円関数論の新たなる基礎』(Fundamenta nova theoriae functionum ellipticarum, ケーニヒスベルク大学、1829年)や後に『クレレ誌』に掲載された論文で示された楕円関数についての研究は、数学に新たな地平を切り開き、とりわけ彼のテータ関数に関する成果は彼の解析学における最も重要な発見である。また、ヤコビの最終乗式の理論を白眉とする微分方程式に関する研究は、R・F・A・クレプシュが編纂した彼の講義集 Vorlesungen über Dynamik(ベルリン、1866年)に完全な形で収められている。 ヤコビが関心を向けていたのは主に解析学ではあったが、他の数学分野においても多くの重要な貢献を成しており、行列式の理論における創始者の一人にも数えられる。特に、n 個の独立変数をもつ与えられた n 個の関数の n 個の微分係数の成す関数行列式を考案した。それは現在彼の名をとってヤコビアンと呼ばれ、多くの解析学の研究で重要な役割を演じている。 1835年の論文でヤコビは次のことを証明した。 ヤコビは一般の五次方程式を次の形に簡約化した。 アーベル関数に関する論文や、数論分野での研究もその価値を認められており、後者については主にカール・フリードリヒ・ガウスの業績を補完するものである。 惑星の運動など特定の力学に関する諸問題にも、折々に同様の関心を向けている。天体力学に力を注いでいた1836年に、ヤコビは恒星座標系に対してヤコビ積分を導入した。 彼が亡くなったときは大量の原稿が残されていた。その一部はしばらくして『クレレ・ジャーナル』に掲載されている。彼の他の仕事には、Comnienlatio de transformatione integralis duplicis indefiniti in formam simpliciorem(1832年)、Canon arithmeticus(1839年)、Opuscula mathematica(1846年 - 1857年)などがある。ベルリン大学の手で業績集 Gesammelte Werke が1881年 - 1891年に刊行されている。特に広く知られた仕事には解析力学におけるハミルトン-ヤコビ方程式がある。 大学などの高等教育機関において解析学や微分方程式を学習する際にはしばしば関数行列式(ヤコビアン)に遭遇し、ベクトル理論を学習する際にはしばしばヤコビ恒等式に遭遇することとなる。そうして数論や暗号学の分野の研究者はヤコビ記号を使うのである。 C.G.J. Jacobi's Gesammelte Werke - 第 1 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 2 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 3 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 4 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 5 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 6 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - 第 7 巻 - Google ブックス C.G.J. Jacobi's Gesammelte Werke - Supplement - Google ブックス
E・T・ベル『数学をつくった人びと』第II巻、田中勇・銀林浩訳、早川書房〈ハヤカワ文庫 NF 284〉、2003年。ISBN 4150502846
David Hestenes, New Foundations of Classical Mechanics, Springer; 2nd ed. edition, 1999. (Hardcover) ISBN 0792353021/(Paperback) ISBN 0792355148 カール・グスタフ・ヤコブ・ヤコビ『ヤコビ楕円関数原論』高瀬正仁訳、講談社、2012年4月。ISBN 978-4-06-156504-3。https://bookclub.kodansha.co.jp/product?item=0000149405。 FAST ISNI VIAF WorldCat ノルウェー フランス BnF data カタルーニャ ドイツ イタリア イスラエル アメリカ スウェーデン 日本 チェコ オーストラリア ギリシャ クロアチア オランダ ポーランド CiNii Books CiNii Research MathSciNet Mathematics Genealogy Project zbMATH ドイッチェ・ビオグラフィー Trove(オーストラリア)
SNAC IdRef カール・グスタフ・ヤコブ・ヤコビ 19世紀の数学者 ドイツの数値解析研究者 ドイツの数論学者 ドイツの微分幾何学者 王立協会外国人会員 プロイセン科学アカデミー会員 ゲッティンゲン科学アカデミー会員 プール・ル・メリット勲章平和章受章者 ケーニヒスベルク大学の教員 ユダヤ系ドイツ人 ポツダム出身の人物 1804年生 1851年没 数学に関する記事 FAST識別子が指定されている記事 ISNI識別子が指定されている記事 VIAF識別子が指定されている記事 WorldCat Entities識別子が指定されている記事 BIBSYS識別子が指定されている記事 BNF識別子が指定されている記事 BNFdata識別子が指定されている記事 CANTICN識別子が指定されている記事 GND識別子が指定されている記事 ICCU識別子が指定されている記事 J9U識別子が指定されている記事 LCCN識別子が指定されている記事 Libris識別子が指定されている記事 NDL識別子が指定されている記事 NKC識別子が指定されている記事 NLA識別子が指定されている記事 NLG識別子が指定されている記事 NSK識別子が指定されている記事 NTA識別子が指定されている記事 PLWABN識別子が指定されている記事 CINII識別子が指定されている記事 CRID識別子が指定されている記事 MATHSN識別子が指定されている記事 MGP識別子が指定されている記事 ZBMATH識別子が指定されている記事 DTBIO識別子が指定されている記事 Trove識別子が指定されている記事 SNAC-ID識別子が指定されている記事 SUDOC識別子が指定されている記事 ISBNマジックリンクを使用しているページ
2025/01/27 10:00更新
|
Carl Gustav Jacob Jacobi
カール=グスタフ=ヤコビと同じ誕生日12月10日生まれの人
TOPニュース
カール=グスタフ=ヤコビと近い名前の人
話題のアホネイター
この記事は、クリエイティブ・コモンズ・表示・継承ライセンス3.0のもとで公表されたウィキペディアの項目「カール=グスタフ=ヤコビ」を素材として二次利用しています。